In vivo modeling of interstitial pressure in the brain under surgical load using finite elements.

نویسندگان

  • M I Miga
  • K D Paulsen
  • P J Hoopes
  • F E Kennedy
  • A Hartov
  • D W Roberts
چکیده

Current brain deformation models have predominantly reflected solid constitutive relationships generated from empirical ex vivo data and have largely overlooked interstitial hydrodynamic effects. In the context of a technique to update images intraoperatively for image-guided neuronavigation, we have developed and quantified the deformation characteristics of a three-dimensional porous media finite element model of brain deformation in vivo. Results have demonstrated at least 75-85 percent predictive capability, but have also indicated that interstitial hydrodynamics are important. In this paper we investigate interstitial pressure transient behavior in brain tissue when subjected to an acute surgical load consistent with neurosurgical events. Data are presented from three in vivo porcine experiments where subsurface tissue deformation and interhemispheric pressure gradients were measured under conditions of an applied mechanical deformation and then compared to calculations with our three-dimensional brain model. Results demonstrate that porous-media consolidation captures the hydraulic behavior of brain tissue subjected to comparable surgical loads and that the experimental protocol causes minimal trauma to porcine brain tissue. Working values for hydraulic conductivity of white and gray matter are also reported and an assessment of transient pressure gradient effects with respect to deformation is provided.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Analysis of Delamination Buckling in Composite Cylindrical Shell under Uniform External Pressure: Cohesive Element Method

Nowadays, due to high ratio of strength to weight, composite cylindrical shells are extensively used in a great variety of different industrial applications and under different cases of loads. In this study, the buckling of composite cylindrical shells was examined under uniform external pressure. The buckling analysis of composite cylindrical shells was first done by using theoretical relation...

متن کامل

Numerical Analysis of Delamination Buckling in Composite Cylindrical Shell under Uniform External Pressure: Cohesive Element Method

Nowadays, due to high ratio of strength to weight, composite cylindrical shells are extensively used in a great variety of different industrial applications and under different cases of loads. In this study, the buckling of composite cylindrical shells was examined under uniform external pressure. The buckling analysis of composite cylindrical shells was first done by using theoretical relation...

متن کامل

Investigating the Performance of Cracked Asphalt Pavement Using Finite Elements Analysis

Occurrence of top down and bottom up fatigue cracking in asphaltic pavements is common. Conventional pavement analysis methods ignore the existence of cracks in asphaltic layers. However, it seems that the responses of cracked pavement would not be the same as a pavement without crack. This paper describes effects of crack type, position and length, and vehicles tire inflation pressure and axle...

متن کامل

Estimation of spinal loads using a detailed finite element model of the L4-L5 lumbar segment derived by medical imaging kinematics; a feasibility study

Introduction: Low back pain is the most prevalent orthopedic disorder and the first main cause of poor working functionality in developed as wells as many developing countries. In Absence of noninvasive in vivo measurement approaches, biomechanical models are used to estimate mechanical loads on human joints during physical activities. To estimate joint loads via musculoskelet...

متن کامل

Finite element modeling of the human head under baton impact

Purpose: This research will try to predict damage probability and calculate the main stress resulted from baton impacts by finite element (FE) modeling of the human head considering skull texture, brain and cerebrospinal fluid.Materials and Methods: A three dimensional FE model of the skull-brain complex was constructed for simulating the baton impact. The FE analysis was carried out using ANSY...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomechanical engineering

دوره 122 4  شماره 

صفحات  -

تاریخ انتشار 2000